Prejsť na cvičenie:
Krok po kroku
Prejsť na tému:
Logaritmické rovnice
Zobraziť na celú obrazovku
Zobraziť súhrn témy
FBH
Zdieľať

QR kód

QR kód je možné naskenovať napr. mobilným telefónom a tak sa dostať priamo k danému cvičeniu alebo sade príkladov.

Kód / krátka adresa

Trojznakový kód je možné napísať do vyhľadávacieho riadka, tiež je súčasťou skrátenej adresy.

Skopírujte kliknutím.

FBH
viemeto.eu/FBH

viemeto.eu/FBH

Logaritmické rovnice

Logaritmická rovnica je taká, kde neznáma vystupuje ako argument logaritmickej funkcie, napr. 2 \cdot \log_6(x-2) = \log_6(14-x).

Pri logaritmických rovniciach si musíme dávať pozor na podmienky riešenia. Argument každého logaritmu totiž musí byť vždy kladné číslo. V uvedenom príklade teda musí platiť x-2>0 a súčasne 14-x > 0.

Logaritmické rovnice riešime s využitím vlastností logaritmickej funkcie a jej vzťahu k exponenciálnej funkcii. Čiastkové spôsoby, ako riešiť logaritmické rovnice:

  • Prevedieme rovnicu na tvar \log_a f(x) = c. Potom musí platiť f(x) = a^c.
  • Prevedieme rovnicu na tvar \log_a f(x) = \log_a g(x). Potom musí platiť f(x) = g(x).
Zatvoriť

Logaritmické rovnice (ťažké)

Vyriešené:



NAPÍŠTE NÁM

Ďakujeme za vašu správu, bola úspešne odoslaná.

Napíšte nám

Neviete si rady?

Najprv sa, prosím, pozrite na časté otázky:

Čoho sa správa týka?

Odkaz Obsah Ovládanie Prihlásenie Licencia