Vieme matiku
Prejsť na cvičenie:
Rozhodovačka
Prejsť na tému:
Roviny: pojmy
Zobraziť na celú obrazovku
Precvičujte neobmedzene

Váš denný počet odpovedí je obmedzený. Pre navýšenie limitu alebo prístup do svojho účtu s licenciou sa prihláste.

Prihlásiť sa
Zobraziť súhrn témy
GN7
Zdieľať
Zobrazit nastavenie cvičení

QR kód

QR kód je možné naskenovať napr. mobilným telefónom a tak sa dostať priamo k danému cvičeniu alebo sade príkladov.

Kód / krátka adresa

Trojznakový kód je možné napísať do vyhľadávacieho riadka, tiež je súčasťou skrátenej adresy.

Skopírujte kliknutím.

GN7
viemeto.eu/GN7

Nastavenie cvičení

Pozor, nastavenie je platné iba pre toto cvičenie a predmet.

viemeto.eu/GN7

Roviny: pojmy

Priamka je jednoznačne určená bodom a dvomi vektormi, ktoré nie sú kolineárne. Na obrázku je rovina \alpha určená bodom A a vektormi \vec{u}, \vec{v}. Každý vektor, ktorý je kolmý na rovinu \alpha sa nazýva normálový vektor roviny \alpha. Na obrázku je normálový vektor \vec{n}.

Parametrické rovnice roviny

Rovina určená bodom A=[a_1;a_2;a_3] a vektormi \vec{u}=(u_1;u_2;u_3) a \vec{v}=(v_1;v_2;v_3)parametrické rovnice tvaru:

\begin{array}{rrl}x&=&a_1+t\cdot u_1+s\cdot v_1\\y&=&a_2+t\cdot u_2+s\cdot v_2\\z&=&a_3+t\cdot u_3+s\cdot v_3\\&&t,s\in\mathbb{R}\end{array}

Skrátene môžeme vyjadriť \alpha:X=A+t\vec{u}+s\vec{v}, kde t, s nazývame parametrami.

Všeobecná rovnica roviny

Všeobecná rovnica roviny je v tvare ax+by+cz+d=0, kde konštanty a, b, c sú súradnice normálového vektora a d reálne číslo.

Všeobecná rovnica roviny rovnobežnej s osami x a y

Pre všetky body ležiace v rovine je tretia súradnica rovnaká, teda rovina má všeobecnú rovnicu: z+d=0.

Všeobecná rovnica roviny rovnobežnej s osami x a z

Pre všetky body ležiace v rovine je druhá súradnica rovnaká, teda rovina má všeobecnú rovnicu: y+d=0.

Všeobecná rovnica roviny rovnobežnej s osami y a z

Pre všetky body ležiace v rovine je prvá súradnica rovnaká, teda rovina má všeobecnú rovnicu: z+d=0.

Bod a rovina

Bod M=[m_1;m_2;m_3] leží v rovine, ak jeho súradnice vyhovujú rovnici roviny.

  • Ak je rovina daná všeobecnou rovnicou ax+by+cz+d=0, pre súradnice bodu, ktorý leží na priamke platí: a\cdot m_1+b\cdot m_2+c\cdot m_3+d=0
  • Ak je rovina daná parametricky, po dosadení súradníc bodu do parametrických rovníc dostaneme sústavu troch rovníc pre dve neznáme t, s, ktorá má presne jedno riešenie (dvojicu reálnych čísel).

Všeobecná rovnica roviny, ktorá prechádza počiatkom

  • Rovina prechádza bodom O=[0;0;0], musí teda platiť: a\cdot0+b\cdot0+c\cdot0+d=0\Rightarrow d=0.
  • Rovina, ktorá prechádza počiatkom má všeobecnú rovnicu: ax+by+cz=0.

Dve rovnobežné roviny

Normálové vektory dvoch rovnobežných rovín \alpha: a_1x+b_1y+c_1z+d_1=0 a \beta: a_2x+b_2y+c_2z+d_2=0 sú kolineárne, teda súradnice jedného vektora sú k-násobok súradníc druhého vektora. Pre konštanty vo všeobecných rovniciach musí platiť:

\begin{array}{rll}a_2&=&k\cdot a_1\\ b_2&=&k\cdot b_1\\c_2&=&k\cdot c_1\\&&k\in\mathbb{R}\end{array}

Ak by platilo i d_2=k\cdot d_1 roviny sú totožné.

Zatvoriť

Roviny: pojmy (ťažké)

Vyriešené:

NAPÍŠTE NÁM

Ďakujeme za vašu správu, bola úspešne odoslaná.

Napíšte nám

Neviete si rady?

Najprv sa, prosím, pozrite na časté otázky:

Čoho sa správa týka?

Odkaz Obsah Ovládanie Prihlásenie Licencia