Výpis prehľadov
Obsah kruhového výseku
Prechádzate súhrny informácií k určitým témam. Systémy Vieme sa zameriavajú hlavne na ich precvičovanie. K cvičeniam k jednotlivým podtémam sa dostanete pomocou odkazov nižšie.
Podkapitoly
Obsah kruhového výseku
Obsah kruhového výseku
Obsah kruhového výseku so stredovým uhlom \alpha a polomerom r vypočítame ako: \frac{\alpha}{360^{\circ}} \cdot \pi \cdot r^2
Dĺžka oblúka
Podobne, dĺžku oblúka, ktorý na kružnici s polomerom r a zodpovedá stredovému uhlu \alpha vypočítame ako: \frac{\alpha}{360^{\circ}} \cdot 2 \pi \cdot r
Príklady
- Kruhový výsek na obrázku má obsah: \frac{150^{\circ}}{360^{\circ}} \cdot \pi \cdot 3^2 = \frac{5}{12} \cdot \pi \cdot 9 = \frac{15}{4} \pi

- Obsah celého kruhu (výseku so stredovým uhlom 360^{\circ}) je: \frac{360^{\circ}}{360^{\circ}} \cdot \pi \cdot r^2 = \pi \cdot r^2
- Dĺžka oblúka na obrázku je: \frac{90^{\circ}}{360^{\circ}} \cdot 2\pi \cdot 3 = \frac{1}{4} \cdot 6 \pi = \frac{3}{2}\pi

- Dĺžka celej kružnice (teda pre celých 360^{\circ}) je: \frac{360^{\circ}}{360^{\circ}} \cdot 2\pi \cdot r = 2\pi \cdot r